Oxidative S-Dealkylation of *tert*-Butyl Aryl Sulphides: A Novel Route to 3-Substituted-3*H*-1,2-benzodithioles¹

Ming Fai Chan*† and Michael E. Garst

Discovery Research, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92715, USA

Substituted 3*H*-1,2-benzodithioles are readily synthesized by an oxidative S-dealkylation reaction of mercapto *tert*-butyl sulphides **8** with *N*-bromosuccinimide in acetonitrile without prior deprotection of the *tert*-butyl group.

The 3*H*-1,2-benzodithioles **1** are a class of relatively unexplored sulphur heterocycles. The presence of a cyclic disulphide fused to a benzene ring in these molecules suggests that they may possess unusual redox properties. The strain associated with the five-membered cyclic disulphides, a consequence of the repulsion between the sulphur–sulphur lone pairs due to the geometric constraints of the ring, is reflected in the instability of these compounds.² As a result, it is not surprising that the only known member, **1** (R = H), of this class of interesting heterocycles is unstable at room temperature and has not been isolated in the pure state.³

As part of our research programme directed towards the design and synthesis of novel bio-compatible reducing agents, we require compounds that can be regenerated by endogenous redox enzyme systems. We were intrigued by the possibility of employing 1 for such purposes. It is expected that ring substitution at the 3-position would stabilize the cyclic disulphide and would also provide a convenient handle for attaching polar groups for binding. Since the synthetic route for the parent compound $1 (R = H)^3$ is not readily adapted for preparing 3-substituted analogues, we have designed a general synthesis of these cyclic disulphides based on ortho-lithiated alkyl phenyl sulphides 2. Ideally, the alkyl group should serve as a protecting group during the ortho-lithiation reaction and should spontaneously depart during subsequent oxidative cyclization so that deprotection would not be necessary (Scheme 1). The tert-butyl group does not undergo metallation and forms a stable carbocation or radical, making it suitable for this purpose.

tert-Butyl phenyl sulphide 4, readily synthesized from benzenethiol,⁴ was lithiated at the *ortho* position by a modified literature method⁵ [BuLi, N, N, N', N'-tetramethyl-ethylenediamine (TMEDA)-hexanes, 25 °C, 4 h]. The resulting anion was treated with aldehydes to give the alcohols 5 in good yields (Table 1). The alcohols 5 were smoothly converted

Table 1 P	reparation	of	compounds	5	and	1	
-----------	------------	----	-----------	---	-----	---	--

		Yield	d(%)	
	R	5	1	
а	C ₅ H ₁₁	87	81	
b	C_9H_{19}	61	44a	
с	PhCH ₂ CH ₂	57	80	
d	Bu ^t OCO(CH ₂) ₄	33	42 ^a	
e	$CH_2 = CH(CH_2)_8$	84	65	

^a Yields based on the alcohol 5.

† Present address: Abbott Laboratories, Abbott Park, Illinois 60064, USA.

into the corresponding mesylates 6^6 which were then displaced with potassium *O*-ethyl xanthate to give the ethyl xanthates 7. Treatment of the xanthate 7 with ethylenediamine⁷ gave the thiols 8 in 60–70% overall yield from the alcohol (Scheme 2).

On treatment with N-bromosuccinimide (NBS) in acetonitrile[‡] (0 °C), the mercapto sulphide **8a** indeed gave the cyclic disulphide **1a**§ as a yellow oil. Compound **1a** is stable at room temperature and has been stored at -10 °C for months without noticeable decomposition. The oxidation of **8a** has been studied in detail with a number of oxidizing agents in acetonitrile as solvent. NBS and 1,3-dibromo-5,5-dimethylhydantoin both gave good yields of **1a**. Other oxidizing agents including *tert*-butyl hydroperoxide, N-iodosuccinimide (NIS)

Scheme 2 Reagents: i, BuLi, TMEDA, hexanes, 25 °C, 4 h, then RCHO, THF, -78 °C (see Table 1); ii, MsCl, Et₃N, CH₂Cl₂, 0 °C, 10–20 min.; iii, EtOC(S)S⁻K⁺, acetone, room temperature, 14 h; iv, ethylenediamine, CH₂Cl₂, 25 °C, 3–4 h, 60–70% overall from 5; v, NBS (1 equiv.), MeCN-acetone (9:1, 0.05 mol dm⁻³), 0 °C, 10 min (see Table 1)

[‡] Acetonitrile was selected as the solvent owing to its ability to capture carbocations which may otherwise cause undesirable side reactions. NBS, 2,4-dibromo-5,5-dimethylhydantoin and NIS were each added as a solution in acetone.

 $\$ Selected spectral data: $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.05–7.48 (4H, m), 6.42 (1H, dd, J 4.6 and 9.6 Hz, -CH–S), 1.8–2.1 (2H. m, S–CH–CH₂–), 1.25–1.65 (6H, m) and 0.89 (3H, distorted t, J 7 Hz); $\delta_{\rm C}$ (75 MHz, CDCl₃) 142.91 (C), 141.12 (C), 127.28 (CH), 125.14 (CH), 124.27 (CH), 122.74 (CH), 60.17 (CH–S), 34.78 (CH₂), 31.45 (CH₂), 27.73 (CH₂), 22.60 (CH₂) and 14.11 (CH₃); ν_{max}/cm^{-1} (neat): 1465, 1442 and 748; *m*/z 224 (M⁺, 17%), 153 (M – C₅H₁₁, 100); found: 224.0707, required for C₁₂H₁₆S₂: 224.0693.

and iodine were much less effective, giving the intermolecular disulphide **9**¶ as the major isolated product. Using NBS in dilute acetonitrile solutions (0.05 mol dm⁻³) as the standard reaction condition, a number of 3-substituted-3H-1,2-benzo-dithioles **1** were synthesized in 60–84% yield (Table 1).

Mechanistically, two distinct pathways can be envisaged. The first pathway involves a direct oxidation of 8 to the disulphide 1 via the intermediate sulphenyl bromide 10 (Scheme 3, path A). In the second pathway, 8 is first converted into the intermolecular disulphide 9 which is then further oxidized to 1 (Scheme 3, path B). We tend to favour the latter for the following reasons:

(i) during the oxidation of **8a**, the characteristic yellow colour of **1** did not appear until more than 0.5 equivalent of NBS had been added; (ii) **9a** was isolated from the reaction of **8a** with 0.5 equivalent of NBS; (iii) further oxidation of **9a** under standard conditions gave **1a** in 78% yield. The failure of weaker oxidizing agents to give **1** can be rationalized by their inefficiency in further reacting with the intermolecular disulphide **9**.

In summary, the present procedure offers a rapid and effective entry into 3-substituted 3H-1,2-benzodithioles from benzenethiol, which is compatible with alkenes and *tert*-butyl esters. Unlike the parent, these 3-substituted 3H-1,2-benzodithioles are stable and isolable under normal conditions, and other compounds with substitution in the benzene ring should also be readily available. The biological effects of 1 will be reported elsewhere.

We thank Mr Mike Roof for some initial experiments.

Received, 6th December 1990; Com. 0/05507G

References

- 1 Presented at the 1989 Pacific Conference on Chemistry and Spectroscopy, Pasadena, California, 18–21 October, 1989; abstract No. 181.
- 2 The lone pairs of the sulphur atoms in acyclic disulphides adopt a dihedral angle of 90° to minimize repulsion (see J. Riga and J. J. Verbist, *J. Chem. Soc., Perkin Trans.* 2, 1983, 1545). However, this angle cannot be achieved in five- or six-membered cyclic disulphides.
- 3 A. Lüttringhaus and K. Hägele, Angew. Chem., 1955, 67, 304;
 A. G. Hortmann, A. J. Aron and A. K. Bhattacharya, J. Org. Chem., 1978, 43, 3374.
- 4 V. N. Ipatieff, H. Pines and B. S. Friedman, J. Am. Chem. Soc., 1938, 60, 2731.
- 5 D. Babin, J. D. Fourneron, L. M. Harwood and M. Julia, *Tetrahedron*, 1981, 37, 325; L. Horner, A. J. Lawson and G. Simons, *Phosphorus Sulfur*, 1982, 12, 353; W. Bauer, P. A. A. Klusener, S. Harder, J. A. Kanters, A. J. M. Duisenberg, L. Brandsma and P. v. R. Schleyer, *Organometallics*, 1988, 7, 552.
- 6 R. K. Crossland and K. L. Servis, J. Org. Chem., 1970, 35, 3195.
- 7 E. Beretta, M. Cinquini, S. Colonna and R. Fornasier, *Synthesis*, 1974, 425.

[¶] This compound exists as a pair of diastereoisomers (R^*R^* and R^*S^*): δ_H (300 MHz, CDCl₃) 7.60 (1H, distorted t, J 7 Hz), 7.45–7.50 (1H, m), 7.36 (1H, distorted t, J 7 Hz), 7.16–7.24 (1H, m), 5.04 (0.5H, dd, J 5.3 and 9.8 Hz, -CH–S), 4.91 (0.5H, dd, J 6.1 and 9.0 Hz, -CH–S), 2.1–2.4 (1H, m, CH₂–CH–S), 1.75–1.90 (1H, m, CH₂–CH–S), 1.38 and 1.34 (9H, 2 X s, Bu⁺), 1.1–1.45 (6 H, m), 0.83 and 0.84 (3H, 2 X t, CH₃); δ_C (75 MHz, CDCl₃)146.65 (C), 145.86 (C), 138.85 (CH), 138.65 (CH), 133.45 (C), 133.19 (C), 129.33 (CH–S), 47.10 (Me₃C–S), 47.06 (C, Me₃C–S), 35.19 (CH), 31.75 (CH), 31.61 (CH), 31.34 (CH₃), 31.29 (CH₃), 26.75 (CH₂), 26.70 (CH₂), 22.27 (CH₂) and 13.75 (CH₃).