Oxidative S-Dealkylation of tert-Butyl Aryl Sulphides: A Novel Route to 3-Substituted-3H-I ,2-benzodithiolesl

Ming Fai Chan*t and Michael E. Garst

Discovery Research, Allergan *Inc.,* 2525 *Dupont* Drive, Irvine, CA *92715,* USA

Substituted 3H-1,2-benzodithioles are readily synthesized by an oxidative S-dealkylation reaction of mercapto tert-butyl sulphides *8* with N-bromosuccinimide in acetonitrile without prior deprotection of the tert-butyl group.

The 3H-1,2-benzodithioles **1** are a class of relatively unexplored sulphur heterocycles. The presence of a cyclic disulphide fused to a benzene ring in these molecules suggests that they may possess unusual redox properties. The strain associated with the five-membered cyclic disulphides, a consequence of the repulsion between the sulphur-sulphur lone pairs due to the geometric constraints of the ring, is reflected in the instability of these compounds.2 As a result, it is not surprising that the only known member, $1 (R = H)$, of this class of interesting heterocycles is unstable at room temperature and has not been isolated in the pure state.3

As part of our research programme directed towards the design and synthesis of novel bio-compatible reducing agents, we require compounds that can be regenerated by endogenous redox enzyme systems. We were intrigued by the possibility of employing **1** for such purposes. It is expected that ring substitution at the 3-position would stabilize the cyclic disulphide and would also provide a convenient handle for attaching polar groups for binding. Since the synthetic route for the parent compound $1 (R = H)^3$ is not readily adapted for preparing 3-substituted analogues, we have designed a general synthesis of these cyclic disulphides based on *ortho*-lithiated alkyl phenyl sulphides **2.** Ideally, the alkyl group should serve as a protecting group during the ortho-lithiation reaction and should spontaneously depart during subsequent oxidative cyclization so that deprotection would not be necessary (Scheme 1). The tert-butyl group does not undergo metallation and forms a stable carbocation or radical, making it suitable for this purpose.

tert-Butyl phenyl sulphide **4,** readily synthesized from benzenethiol,⁴ was lithiated at the *ortho* position by a modified literature method⁵ [BuLi, *N,N,N',N'*-tetramethylethylenediamine (TMEDA)-hexanes, 25 "C, 4 h]. The resulting anion was treated with aldehydes to give the alcohols *5* in good yields (Table 1). The alcohols *5* were smoothly converted

*^a*Yields based on the alcohol *5.*

t *Present address:* Abbott Laboratories, Abbott Park, Illinois 60064, USA.

into the corresponding mesylates **66** which were then displaced with potassium 0-ethyl xanthate to give the ethyl xanthates **7.** Treatment of the xanthate **7** with ethylenediamine7 gave the thiols **8** in 60-70% overall yield from the alcohol (Scheme 2).

On treatment with N-bromosuccinimide (NBS) in acetonitrile \ddagger (0 °C), the mercapto sulphide **8a** indeed gave the cyclic disulphide **la§** as a yellow oil. Compound **la** is stable at room temperature and has been stored at -10 °C for months without noticeable decomposition. The oxidation of **8a** has been studied in detail with a number of oxidizing agents in acetonitrile as solvent. NBS and **1,3-dibromo-5,5-dimethylhy**dantoin both gave good yields of **la.** Other oxidizing agents including tert-butyl hydroperoxide, N-iodosuccinimide (NIS)

Scheme 2 *Reagents:* i, BuLi, TMEDA, hexanes, 25 "C, 4 h, then RCHO, THF, -78° C (see Table 1); ii, MsCl, Et₃N, CH₂Cl₂, 0 $^{\circ}$ C, 10-20 min.; iii, EtOC(S)S-K+, acetone, room temperature, 14 h; iv, ethylenediamine, CH_2Cl_2 , 25 °C, 3–4 h, 60–70% overall from 5; v, NBS (1 equiv.), MeCN-acetone (9 : 1, 0.05 mol dm-3), **0** "C, 10 min (see Table 1)

+ Acetonitrile was selected as the solvent owing to its ability to capture carbocations which may otherwise cause undesirable side reactions. NBS, **2,4-dibromo-5,5-dimethylhydantoin** and NIS were each added as a solution in acetone.

⁹*Selected spectral data:* **aH** (300 MHz, CDCI,) 7.05-7.48 (4H, m), 6.42 (lH, dd, *J* 4.6 and 9.6 **Hz,** -CH-S), 1.8-2.1 (2H. m, S-CH-C H_2 -), 1.25-1.65 (6H, m) and 0.89 (3H, distorted t, J 7 Hz); *6~* (75 MHz, CDC13) 142.91 (C), 141.12 (C), 127.28 (CH), 125.14 (CH), 124.27 (CH), 122.74 (CH), 60.17 (CH–S), 34.78 (CH₂), 31.45 $(CH₂), 27.73 (CH₂), 22.60 (CH₂)$ and 14.11 (CH₃); v_{max}/cm⁻¹ (neat): 1465, 1442 and 748; m/z 224 (M⁺, 17%), 153 (M - C₅H₁₁, 100); found: 224.0707, required for $C_{12}H_{16}S_2$: 224.0693.

and iodine were much less effective, giving the intermolecular disulphide **97** as the major isolated product. Using NBS in dilute acetonitrile solutions $(0.05 \text{ mol dm}^{-3})$ as the standard reaction condition, a number of 3-substituted-3H-l,2-benzodithioles 1 were synthesized in 60-84% yield (Table 1).

Mechanistically, two distinct pathways can be envisaged. The first pathway involves a direct oxidation of **8** to the disulphide **1** *via* the intermediate sulphenyl bromide **10** (Scheme 3, path *A).* In the second pathway, **8** is first converted into the intermolecular disulphide **9** which is then further oxidized to **1** (Scheme 3, path *B).* We tend to favour the latter for the following reasons:

(i) during the oxidation of **8a,** the characteristic yellow colour of **1** did not appear until more than 0.5 equivalent of NBS had been added; *(ii)* **9a** was isolated from the reaction *of* **8a** with 0.5 equivalent of NBS; *(iii)* further oxidation of **9a** under standard conditions gave **la** in 78% yield. The failure of weaker oxidizing agents to give **1** can be rationalized by their inefficiency in further reacting with the intermolecular disulphide **9.**

In summary, the present procedure offers a rapid and effective entry into 3-substituted 3H-1,2-benzodithioles from benzenethiol, which is compatible with alkenes and tert-butyl esters. Unlike the parent, these 3-substituted 3H-1,2-benzodithioles are stable and isolable under normal conditions, and other compounds with substitution in the benzene ring should also be readily available. The biological effects of **1** will be reported elsewhere.

We thank Mr Mike Roof for some initial experiments.

Received, 6th December *1990; Corn. Of055076*

References

- **¹**Presented at the **1989** Pacific Conference on Chemistry and Spectroscopy, Pasadena, California, **18-21** October, **1989;** abstract No. **181.**
- **2** The lone pairs of the sulphur atoms in acyclic disulphides adopt a dihedral angle of **90"** to minimize repulsion (see J. Riga and J. J. Verbist, *J. Chem. SOC., Perkin Trans.* **2,1983, 1545).** However, this angle cannot be achieved in five- or six-membered cyclic disulphides.
- **3** A. Luttringhaus and K. Hagele, *Angew. Chem.,* **1955, 67, 304;** A. **G.** Hortmann, A. J. Aron and **A.** K. Bhattacharya, J. *Org. Chem.,* **1978, 43, 3374.**
- **4** V. **N.** Ipatieff, H. Pines and B. S. Friedman, *J. Am. Chem. SOC.,* **1938, 60, 2731.**
- **5** D. Babin, **J.** D. Fourneron, L. **M.** Hanvood and **M.** Julia, *Tetrahedron,* **1981, 37, 325;** L. Horner, A. J. Lawson and G. Simons, *Phosphorus Sulfur,* **1982, 12, 353; W.** Bauer, P. **A. A.** Klusener, *S.* Harder, J. A. Kanters, A. J. M. Duisenberg, L. Brandsma and P. **v.** R. Schleyer, *Organometallics,* **1988, 7, 552.**
- **6 R. K.** Crossland and K. L. Servis, J. *Org. Chem.,* **1970, 35, 3195.**
- **7 E.** Beretta, **M.** Cinquini, **S.** Colonna and R. Fornasier, *Synthesis,* **1974, 425.**

⁷ This compound exists as a pair of diastereoisomers *(R*R** and *R*S*): bH* **(300** MHz, CDC13) **7.60** (lH, distorted t, **17** Hz), **7.45-7.50 (1H,m),7.36(1H,distortedt,J7Hz),7.16-7.24(1H,m),5.04(0.5H,** dd, J **5.3** and **9.8 Hz,** -CH-S), **4.91 (0.5H,** dd, *J* **6.1** and **9.0 Hz,** -CH-S), 2.1-2.4 (1H, m, CH₂-CH-S), 1.75-1.90 (1H, m, CH₂-CH-S), **1.38** and **1.34 (9H, 2 X s,** But), **1.1-1.45 (6** H, m), **0.83** and **0.84** (CH), **138.65** (CH), **133.45** (C), **133.19** (C), **129.33** (CH), **127.86** (Me3C-S), **47.06 (C,** Me&-S), **35.19** (CH), **31.75** (CH), **31.61** (CH), **31.34** (CH,), **31.29** (CH,), **26.75** (CH2), **26.70** (CH,), **22.27** (CH2) and $(3H, 2Xt, CH_3);$ δ_C (75 MHz, CDCl₃)146.65 **(C)**, 145.86 **(C)**, 138.83 (CH), **126.96** (CH), **126.79 (CH), 51.87** (CH-S), **50.35** (CH-S), **47.10 13.75** (CH,).